
Stem cell application in neurorehabilitation 

Over the last 35 years major advances have been made in the field of neural restoration and this 

includes not only better strategies for endogenous repair but also the ability to actively intervene 

through neural grafting for example (see Table 14.1). This revolution stems from a better understanding 

of the processes underlying intrinsic repair, the realization that endogenous processes such as 

neurogenesis still occur in the adult mammalian brain [1] , and that neurotrophic factors can be used to 

encourage cell survival and fibre outgrowth in diseased cells within the central nervous system (CNS), 

along with in situ reprogramming (reviewed in [2]). In addition, we have realized that transplant of 

certain cells can survive in the adult CNS and make and receive connections with functional benefits to 

the grafted animal. In this chapter we explore various aspects of these processes including the role of 

adult neurogenesis in health and disease as well as the cell based approaches that have been used to 

treat a whole variety of CNS disorders but especially Parkinson’s and Huntington’s disease and spinal 

cord injury (see Box 14.1, and [2–4]). 

 

 

Basic biology of stem cells 

Endogenous neurogenesis in the adult mammalian brain It has been a long held concept in the 

neurosciences that the generation of neurons tapers off with the end of embryonic development. For 

decades the leading opinion in the field was that the adult mammalian brain is not capable of generating 

new neurons throughout life due to the absence of any neurogenic, dividing cells, i.e. neural stem cells 

(NSCs). It was assumed that the neuronal networks and circuitries in the mature CNS are too complex to 

allow for the maturation and integration of newborn neuronal cells. Thus, the most common strategy to 

ameliorate disease symptoms and promote rehabilitation in the context of neuropsychiatric disease was 

to enhance functional plasticity of surviving networks and brain areas. However, the concept that the 

adult brain loses its capacity to regenerate was challenged in the mid 1960ies when the first 

experiments suggested that there may be proliferating cells in the adult brain that appeared to have the 

potential to generate new neurons, at least in distinct areas of the mammalian brain [5, 6]. In these 

pioneering studies by Altman, Kaplan, and others radioactively labelled thymidine was used to visualize 

proliferating cells doubling their DNA content prior to cytokinesis. However at this time it was 

technically extremely difficult to truly confirm that  

i) a cell is newborn and  

ii) differentiates into a neuron. However, the idea that the adult brain may even be capable of 

generating new neurons was fueled by the findings that cells could be isolated and propagated in vitro 

that showed NSC properties meaning that these cells were able to self renew and to generate neurons 

in the culture dish [7] .  

 

 

This technical breakthrough, leading to the acceptance that neurogenesis occurs in the mammalian 

brain throughout life, came with the use of thymidine analogues (such as bromodeoxyuridine; BrdU) 

that could be visualized using antibodies in combination with techniques to label neuronal cells using 

confocal microscopy (e.g. [8]).  



 

 

With this strategy—that was later complemented using specific retroviruses that selectively label 

dividing cells and their progeny and transgenesis based approaches—two main neurogenic regions in 

the adult mammalian brain could be identified: the subventricular zone (SVZ) lining the lateral ventricles 

out of which newborn cells migrate along the rostral migratory stream (RMS) towards the olfactory bulb 

(OB) where they differentiate into several types of mostly GABAergic olfactory neurons, and the 

subgranular zone (SGZ) of the hippocampal dentate gyrus (DG) where exclusively glutamatergic, 

excitatory granule cells are generated [9] . In these two neurogenic areas NSCs with certain astrocytic 

properties that are largely quiescent (i.e. do rarely divide) under normal conditions give rise to more 

proliferative progenitors that generate new, immature neurons [10, 11]. These new neurons structurally 

and functionally mature over the course of several weeks before they integrate into the preexisting 

neural circuitries in the OB and DG. Interestingly, the functional properties of young, immature neurons 

substantially differ from their older progeny that are generated during embryonic development, as 

newborn cells are much more excitable and display a higher degree of plasticity which is believed to be 

the reason why the adult brain invests in the energetically demanding exercise of supporting these two 

neurogenic (and highly plastic) regions [10]. 

 

 

Notably, the number of neurons generated is not static but rather is dynamically regulated. Positive 

stimuli such as physical exercise and environmental enrichment strongly enhance the number of 

newborn neurons whereas negative regulators such as stress and ageing substantially decrease 

neurogenesis [10]. Initially based on these correlative data it was hypothesized that adult neurogenesis 

may be not only important for physiological brain function but may also contribute to certain disease 

processes—for example in the context of affective disorders such as major depression as well as 

neurodegenerative disorders [12]. Indeed, in mouse models of stress and depression it could be shown 

that certain antidepressants strongly enhanced neurogenesis and their behavioural effect is dependent 

on pharmacologically enhanced neurogenesis [13]. Besides a contribution of altered or failing 

neurogenesis to certain disease processes the identification of endogenous NSCs also opened up the 

possibility of activating and recruiting NSCs or their neuronal progeny to lesioned or injured brain areas 

to replace lost neurons (e.g. in the context of ischaemic stroke). Thus, targeting endogenous NSCs that 

generate new neurons throughout life presented a novel treatment option to improve or restore brain 

function in a number of neuropsychiatric diseases. 

 

 

Exogenous stem cells for neural repair  

There have been numerous attempts both experimentally as well as clinically over the last decades to 

replace lost neurons not only by mobilizing endogenous NSCs but also by transplanting exogenous cells 

with the capacity to produce new neurons into the diseased or injured brain. For example, fetal 

progenitors were used to replace lost dopaminergic neurons in the context of Parkinson’s disease (PD) 



(for details, see Stem cell based therapeutic approaches in Parkinson’s disease, p. 172). However, it soon 

became evident that the heterogeneity of transplants and the inherent difficulties in standardizing the 

dissection and preparation of the tissue as well as ethical issues made it extremely challenging to use 

fetal human progenitors as a standard treatment option in PD. Thus, new cellular sources had to be 

identified and developed that could restore and replace specific neural structures lost to brain 

injury/degeneration.  

 

 

Much hope to find a reliable source for neuronal cell replacement was invested in human embryonic 

stem cells (ESCs). ESCs are derived from the inner cell mass early during embryonic development, and 

represent a cell type that shows pluripotency—which means that these cells are capable of generating 

all tissues of the organism—(besides the trophoblast)—along with the capacity for almost indefinite self 

renewal. In the last decade, substantial progress has been made to develop protocols to direct ESCs 

towards specific neuronal lineages, such as dopaminergic neurons (e.g. [14, 15]).  

 

 

These protocols have also brought with them reassurance that the risk of transplanting undifferentiated, 

and thus dividing, ESCs with the potential to form teratomas has now been circumvented. Nevertheless, 

the clinical use of ESCs is still challenged by ethical concerns (given that human ESCs are derived from 

the progeny of vitro fertilized oocytes) and the fact that transplanted ESCs are nonautologous 

transplants requiring at least a certain degree of immunosuppression to prevent rejection of the 

transplanted tissue by the host.  

 

 

Given these limitations, the discovery that virtually every somatic cell can be reprogrammed to adopt a 

pluripotent state by introducing defined transcription factors opened novel possibilities for patient-

specific cell replacement strategies. These cells, called induced pluri-potent stem cells (iPSCs), can be 

easily generated from each individual (e.g. by a simple skin biopsy and isolating fibroblasts that are then 

subjected to reprogramming) yielding an isogenic and patient-selective source for therapeutic cell 

replacement strategies [16]. However, the use of these cells in an autologous fashion for patients is still 

some way off, given the cost of their manufacture and the cost that comes with the preclinical testing of 

any one stem cell line product.  

 

 

In the following sections we will briefly review the evidence that altered neurogenesis in the adult brain 

contributes to neuropsychiatric disease processes and how the mobilization of endogenous or the use of 

exogenous, transplanted stem cells may provide novel treatment options in the context of 



neurodegeneration, specifically in Parkinson’s and Huntington’s disease, as well as other CNS dis-orders 

such as spinal cord injury 

 

 

Basic biology of stem cells 

Endogenous neurogenesis in the adult mammalian brain It has been a long held concept in the 

neurosciences that the generation of neurons tapers off with the end of embryonic development. For 

decades the leading opinion in the field was that the adult mammalian brain is not capable of generating 

new neurons throughout life due to the absence of any neurogenic, dividing cells, i.e. neural stem cells 

(NSCs). It was assumed that the neuronal networks and circuitries in the mature CNS are too complex to 

allow for the maturation and integration of newborn neuronal cells. Thus, the most common strategy to 

ameliorate disease symptoms and promote rehabilitation in the context of neuropsychiatric disease was 

to enhance functional plasticity of surviving networks and brain areas. However, the concept that the 

adult brain loses its capacity to regenerate was challenged in the mid 1960ies when the first 

experiments suggested that there may be proliferating cells in the adult brain that appeared to have the 

potential to generate new neurons, at least in distinct areas of the mammalian brain [5, 6]. In these 

pioneering studies by Altman, Kaplan, and others radioactively labelled thymidine was used to visualize 

proliferating cells doubling their DNA content prior to cytokinesis. However at this time it was 

technically extremely difficult to truly confirm that  

i) a cell is newborn and  

ii) differentiates into a neuron. However, the idea that the adult brain may even be capable of 

generating new neurons was fueled by the findings that cells could be isolated and propagated in vitro 

that showed NSC properties meaning that these cells were able to self renew and to generate neurons 

in the culture dish [7 

 

 

With this strategy—that was later complemented using specific retroviruses that selectively label 

dividing cells and their progeny and transgenesis based approaches—two main neurogenic regions in 

the adult mammalian brain could be identified: the subventricular zone (SVZ) lining the lateral ventricles 

out of which newborn cells migrate along the rostral migratory stream (RMS) towards the olfactory bulb 

(OB) where they differentiate into several types of mostly GABAergic olfactory neurons, and the 

subgranular zone (SGZ) of the hippocampal dentate gyrus (DG) where exclusively glutamatergic, 

excitatory granule cells are generated [9] . In these two neurogenic areas NSCs with certain astrocytic 

properties that are largely quiescent (i.e. do rarely divide) under normal conditions give rise to more 

proliferative progenitors that generate new, immature neurons [10, 11]. These new neurons structurally 

and functionally mature over the course of several weeks before they integrate into the preexisting 

neural circuitries in the OB and DG. Interestingly, the functional properties of young, immature neurons 

substantially differ from their older progeny that are generated during embryonic development, as 

newborn cells are much more excitable and display a higher degree of plasticity which is believed to be 

the reason why the adult brain invests in the energetically demanding exercise of supporting these two 

neurogenic (and highly plastic) regions [10 



 

Notably, the number of neurons generated is not static but rather is dynamically regulated. Positive 

stimuli such as physical exercise and environmental enrichment strongly enhance the number of 

newborn neurons whereas negative regulators such as stress and ageing substantially decrease 

neurogenesis [10]. Initially based on these correlative data it was hypothesized that adult neurogenesis 

may be not only important for physiological brain function but may also contribute to certain disease 

processes—for example in the context of affective disorders such as major depression as well as 

neurodegenerative disorders [12]. Indeed, in mouse models of stress and depression it could be shown 

that certain antidepressants strongly enhanced neurogenesis and their behavioural effect is dependent 

on pharmacologically enhanced neurogenesis [13]. Besides a contribution of altered or failing 

neurogenesis to certain disease processes the identification of endogenous NSCs also opened up the 

possibility of activating and recruiting NSCs or their neuronal progeny to lesioned or injured brain areas 

to replace lost neurons (e.g. in the context of ischaemic stroke). Thus, targeting endogenous NSCs that 

generate new neurons throughout life presented a novel treatment option to improve or restore brain 

function in a number of neuropsychiatric diseases 



 

Exogenous stem cells for neural repair  

There have been numerous attempts both experimentally as well as clinically over the last decades to 

replace lost neurons not only by mobilizing endogenous NSCs but also by transplanting exogenous cells 

with the capacity to produce new neurons into the diseased or injured brain. For example, fetal 

progenitors were used to replace lost dopaminergic neurons in the context of Parkinson’s disease (PD) 

(for details, see Stem cell based therapeutic approaches in Parkinson’s disease, p. 172). However, it soon 

became evident that the heterogeneity of transplants and the inherent difficulties in standardizing the 

dissection and preparation of the tissue as well as ethical issues made it extremely challenging to use 

fetal human progenitors as a standard treatment option in PD. Thus, new cellular sources had to be 

identified and developed that could restore and replace specific neural structures lost to brain 

injury/degeneration.  

 

 

Much hope to find a reliable source for neuronal cell replacement was invested in human embryonic 

stem cells (ESCs). ESCs are derived from the inner cell mass early during embryonic development, and 

represent a cell type that shows pluripotency—which means that these cells are capable of generating 

all tissues of the organism—(besides the trophoblast)—along with the capacity for almost indefinite self 



renewal. In the last decade, substantial progress has been made to develop protocols to direct ESCs 

towards specific neuronal lineages, such as dopaminergic neurons (e.g. [14, 15]).  

 

 

These protocols have also brought with them reassurance that the risk of transplanting undifferentiated, 

and thus dividing, ESCs with the potential to form teratomas has now been circumvented. Nevertheless, 

the clinical use of ESCs is still challenged by ethical concerns (given that human ESCs are derived from 

the progeny of vitro fertilized oocytes) and the fact that transplanted ESCs are nonautologous 

transplants requiring at least a certain degree of immunosuppression to prevent rejection of the 

transplanted tissue by the host.  

 

 

Given these limitations, the discovery that virtually every somatic cell can be reprogrammed to adopt a 

pluripotent state by introducing defined transcription factors opened novel possibilities for patient-

specific cell replacement strategies. These cells, called induced pluri-potent stem cells (iPSCs), can be 

easily generated from each individual (e.g. by a simple skin biopsy and isolating fibroblasts that are then 

subjected to reprogramming) yielding an isogenic and patient-selective source for therapeutic cell 

replacement strategies [16]. However, the use of these cells in an autologous fashion for patients is still 

some way off, given the cost of their manufacture and the cost that comes with the preclinical testing of 

any one stem cell line product.  

 

 

In the following sections we will briefly review the evidence that altered neurogenesis in the adult brain 

contributes to neuropsychiatric disease processes and how the mobilization of endogenous or the use of 

exogenous, transplanted stem cells may provide novel treatment options in the context of 

neurodegeneration, specifically in Parkinson’s and Huntington’s disease, as well as other CNS dis-orders 

such as spinal cord injury 

 

 

Therapeutic targeting of neural stem cells in neuropsychiatric disease 

Adult hippocampal neurogenesis and affective disorders Affective disorders such as major depression 

generate a major social and financial burden on Western societies given their high prevalence. Even 

though several classes of antidepressant drugs have been in clinical use for decades, there remains a 

substantial fraction of patients with therapy resistant disease, indicating the need to  

i) better understand the aetiology and neural consequences of affective disorders and  

ii) novel treatment strategies. One of the key risk factors (besides age, see Age associated cognitive 

decline and reduced neurogenesis, p. 171) to develop affective disorders is stress, which was found to 



dramatically reduce neurogenesis [18]. In combination with the findings that a structural hallmark of 

patients suffering from depression is the reduction of hippocampal volume as measured by noninvasive 

imaging approaches, this initiated a large number of studies aiming at understanding a potential link 

between the onset or maintenance of affective disorders and adult hippocampal neurogenesis [13, 19, 

20]. Strikingly, a number of antidepressants such as selective serotonin reuptake inhibitors (SSRIs) 

enhance the number of neurons generated and depend at least partially on neurogenesis for their 

efficacy (e.g. [21]). Supporting the potential contribution of failing neurogenesis to the depressive 

disease process has been the fact that many antidepressants show a latency of 2–4 weeks between 

being taken and having a therapeutic effect—a time that may reflect the antidepressant induced 

generation, maturation, and functional integration of newborn neurons [13].  

 

 

However, genetic enhancement of hippocampal neurogenesis turned in the adult hippocampus 

represents a novel therapeutic target to ameliorate disease symptoms in major depressive disorders. On 

the other hand, it is unlikely that hippocampal neurogenesis is the major and sole cause whose 

alterations may lead to or, if pharmacologically targeted, cure depression. Most importantly, more 

evidence needs to be produced that neurogenesis may indeed be affected in patients suffering from 

affective disorders. 

 

 

Age associated cognitive decline and reduced neurogenesis Ageing is associated with a substantial 

decline in several cognitive domains that may eventually lead to severe disabilities [23, 24]. 

Interestingly, the number of neurons that are generated in the adult hippocampus (and SVZ/OB system) 

dramatically decreases with advancing age (without coming to a complete stop) [1, 10], even though 

these findings remain controversial [25–27]. Furthermore, the number of neurons born in older age 

does correlate with the performance of rodents on hippocampus dependent learning tasks [28]. Thus, it 

has been speculated that hippocampal neurogenesis may be a critical mediator of cognition with ageing. 

This idea has been supported for example by imaging based findings in humans that the first structure 

showing functional and structural alterations in cognitively challenged, aged individuals is indeed the 

hippocampal DG [29]. In addition, known regulators of neurogenesis such as running and environmental 

enrichment have turned out to be effective in enhancing neurogenesis in aged rodents, which was again 

associated with improved performance in hippocampus dependent learning tasks [30, 31 

 

 

Current projects aim to elucidate the cellular and molecular mechanisms that are responsible for the age 

dependent drop of neurogenesis. Furthermore, it remains unclear if enhancing neurogenesis is sufficient 

to ameliorate cognition in advanced age. Be that as it may, the observed association between cognitive 

decline and decreased neurogenesis suggests a mechanism at least partially explaining the drop in 

hippocampus dependent cognition with old age. 

 



 

Altered neurogenesis in epilepsy  

Besides the abovementioned diseases that reduce the number of neurons, there are also disease states 

that at least transiently enhance the number of neurons generated. For example, it has been shown that 

neurogenesis is dramatically enhanced in rodent models of temporal lobe epilepsy (TLE) [32]. Notably, 

not only is the number of neurons generated enhanced: but epileptic activity also leads to ectopic 

migration of newborn granule cells into the hilar region of the DG and the aberrant formation of hilar 

basal dendrites that form ectopic synapses and potentially impair proper synaptic transmission and 

connectivity within the dentate circuitry [33, 34]. Strikingly, it has also been shown that ectopic 

neurogenesis is sufficient to drive epilepto genesis, further supporting the findings that enhanced but 

massively altered neurogenesis in the context of TLE is potentially a contributing disease factor [35]. 

However, neurogenesis may not only be involved in the establishment of epileptogenic circuitries as it 

has also been shown that in more advanced or chronic disease stages, neurogenesis is strongly 

downregulated and may represent one factor responsible for cognitive decline that is commonly 

observed in patients affected by chronic or therapy refractory forms of TLE [36]. Thus, drugs aiming to 

enhance neurogenesis in the context of affective disorders or ageing may also turn out to be effective in 

ameliorating cognitive symptoms in advanced stages of TLE by increasing the number of newborn 

granule cells [37 

 

 

This has been looked at in animal models of TLE through the transplantation of exogenous NSCs into the 

epileptic hippocampus. First results are promising even though the invasiveness and associated risks 

when considering the next steps in taking such a strategy into the clinical setting are substantial [38 

 

 

Stem cell based therapeutic approaches in Parkinson’s disease Parkinson’s disease is a common 

neurodegenerative disorder of the CNS that affects about 1 in 800 people and typically presents in late 

life around 70 years of age. It has as part of its core pathology the loss of the nigrostriatal dopaminergic 

neurons and the formation of alpha synuclein positive Lewy bodies. However, in recent years a number 

of fundamental new concepts have emerged with respect to PD: 

 

1. The disease process is not restricted to dopaminergic nigrostriatal neurons but involves many sites 

within the brain and even neurons outside of the CNS (e.g. in the enteric nervous system) [39]; 

 

2. PD is not simply a disorder affecting motor control but embraces a range of nonmotor features, some 

of which may even precede the onset of the movement disorder (so called prodromal or premotor PD) 

[40–42]); 

 



3. The disease process may even begin in the periphery and then spread into the CNS with alpha 

synuclein behaving in a prion like fashion [43–45]; 

 

4. While the pathogenesis of the disease process may involve protein spread, it is still unknown why 

people develop PD in the first place although there is now substantial evidence to show that there are 

major genetic risk factors for getting it [46]. This includes heterozygote mutations in genes coding for 

glucocerebrosidase (GBA), in which homozygous mutations cause Gaucher’s disease [47, 48]; 

 

5. There are now a large number of mendelian forms of PD described some of which resemble idiopathic 

PD both clinically and pathologically [49]; 

 

6. Idiopathic PD is heterogeneous and the basis for this may relate to genetic variants that are also 

linked to the risk of getting it in the first place [50, 51 

 

All of this has had implications for the use of stem cells in the study and treatment of PD in two main 

ways: 

i. Disease modelling using iPSCs, typically from patients with Mendelian forms of PD or stem cell lines 

transfected by the gene of interest [52]; 

 

ii. The fact that neural grafting with dopaminergic cell transplants will only help some patients with PD 

and then only some of their symptoms and signs—in other words, it will never be a treatment for all 

patients with PD [2, 53]. 

 

 

PD disease modelling 

iPSCs derived from patients offer a powerful in vitro disease model as these should carry the identical 

cellular pathological features of the disease of that patient [54]. However, there are several key 

assumptions with this approach. Firstly, that any pathology seen in neurons so derived after a few days 

or weeks in culture is disease relevant and speaks to the pathology seen in the CNS of the patient that 

has taken decades to develop. Secondly it assumes that the disease process is cell autonomous as the 

only cells being studied are the neurons so generated, and it does not, and cannot, interrogate how 

different cellular players may talk to each other in the disease process (e.g. the role of inflammation). 

Thirdly the reprogramming of the cells removes some of the age related factors [55] that are critical in 

the development of PD, given this is the biggest risk factor for PD. Finally, it has to be shown that the 

neurons so produced are truly authentic neurons of the type wanted. This is especially true for 

dopaminergic neurons as there are at least 10 subtypes of dopaminergic neurons in the adult brain (A8–

A17) [56], all of which show specific electrophysiological, neurochemical and transcriptional profiles and 

only some of which are lost in PD [57 

 



 

Despite a number of obstacles, several groups have produced PD patient specific iDA derived from iPSCs 

and early studies found that the differentiated cells did not show any disease related phenotype [58]. In 

addition, it was noted that residual transgene expression in virus carrying iPSCs influenced their 

molecular properties, which has led to the use of derivation methods free of reprogramming factors in 

modelling of human diseases. Subsequently it has been shown that iDA derived from iPSCs do display 

specific PD pathology using cell lines from patients with sporadic and LRRK2associated PD [59, 60]. As 

with the earlier study [58], no difference was observed between the iDA from PD patients and controls 

in the differentiation efficiency, morphology, and phenotype after 30 days in culture. However, 

longterm culture (<75 days) of iDA derived from sporadic PD cases revealed altered morphology, with a 

decrease in the number and length of neurites and an increased susceptibility to degeneration. iDA from 

PD patients also exhibit defective autophagosome clearance [59], as well as mitochondrial defects [61, 

62 

 

 

While the vast majority of PD cases are idiopathic (>95%), several causative genes have been identified 

in families harbouring mendelian forms of the disease [63]. So far at least five PD related genes have 

been studied using iPS cell technology including neurons derived from patients carrying mutations in the 

alpha synuclein (SNCA), glucocerebrosidase, Leucine Rich Repeat Kinase2 (LRRK2), phosphatase, and 

tensin homologue (PTEN)induced putative kinase 1 (PINK1) and Parkin genes. All of these have shown 

some pathological changes, although they are often subtle and their relevance to the disease process in 

the affected patient is unclear 

 

 

In recent years, neurons differentiated from iPSCs while providing new insights into the cellular 

mechanisms involved in the pathophysiology of PD, have also been considered for transplantation. 

However, concerns remain with respect to their safety, mainly due to their proliferative, tumorigenic 

potential [64, 65], but of late these anxieties have been allayed by longterm studies in nonhuman 

primates using dopaminergic neurons made from iPSCs derived from control subjects and PD patient 

[66]. To overcome this issue, several groups have developed methods that allow direct conversion of 

human differentiated somatic cells, such as fibroblasts, into functional neurons avoiding any 

intermediate pluripotent state. The first study to do this converted mouse embryonic and postnatal 

fibroblasts into functional neurons by the overexpression of three transcription factors (Ascl1, Brn2, and 

Mytl1) [67]. Subsequently human fibroblasts have also been successfully converted into functional 

neurons by overexpressing the same transcription factors [68] and this has now also been done in 

disease conditions (e.g. Alzheimer’s disease patients) [69]. For PD, obviously making dopaminergic 

neurons would be of interest and it has been shown that the addition of two transcription factors 

specific to dopaminergic lineage (Lmx1a and FoxA2) to the three original factors is sufficient to generate 

dopaminergic like (DA) neurons [68, 70]. However, the gene expression profiles of these reprogrammed 

DA neurons differed significantly from primary midbrain DA neurons in these studies and so more recent 



attempts to generate iDA like midbrain dopaminergic neurons have used six reprogramming factors 

(Ascl1, Pitx3, Nurr1, Lmx1a, Foxa2, and En1), as well as the patterning factors Shh and FGF8 [71]. While 

these iDA expressed many of the relevant markers of dopaminergic neurons, the cells only partially 

restored dopamine function in vivo, and have failed to exhibit similar levels of midbrain transcription 

levels found in embryonic or adult midbrain dopamine neurons [71]. More recently, a combination of 

five transcription factors (Ascl1, Pitx3, Nurr1, Sox2, and Ngn2) generated iDA that further provided 

benefit when grafted in the 6OHDA rat model of PD, suggesting that these reprogrammed cells display 

functional midbrain dopaminergic neuronal properties [72 

 

 

Because the direct conversion does not go through a proliferative state, the quantity of neurons that can 

be obtained is limited by the accessible number of fibroblasts used as starting material for conversion. 

Nevertheless, direct conversion of the patient’s fibroblasts into relevant neuronal subtypes is very 

promising for disease modelling and may even ultimately have a role in neural grafting [73]. 

 

 

Neural transplantation 

The core loss of the dopaminergic neurons in PD coupled to the response of patients to dopaminergic 

drugs led in the 1980s to the idea that this condition could be treated through the transplantation of 

dopaminergic cells into the diseased basal ganglia. This initially involved autografts of the catecholamine 

rich adrenal medulla, although the results were generally disappointing both experimentally and in 

patients. It was therefore not long before this approach was superseded by transplants of fetal ventral 

mesencephalic tissue 

[74]. This approach involves harvesting the dopaminergic neurons from the developing ventral midbrain 

and then grafting them into the site where dopamine normally works, namely the striatum. 

Experimentally it was shown that this approach worked well when the cells were harvested at the time 

they normally develop (E13–14 in rats and mice; 6–8 weeks post conception in humans) as the grafted 

cells could survive, make and receive connections from the host brain and release dopamine in a 

regulated manner with functional benefits to the grafted animal. It was on this background that open 

label studies were undertaken in patients with PD both in Europe and the United States. These studies 

showed that some patients could derive longterm benefit from these grafts and these clinical 

improvements correlated with Fdopa positron emission tomography (PET) imaging evidence of 

dopamine cell survival at the site of implantation. A correlation that was confirmed in a few postmortem 

studies [75]. The success of this approach gave confidence in some quarters to push on and undertake 

more rigorous doubleblind placebo controlled trials even though the results from the open label studies 

had been variable and the optimal way of giving the therapy not resolved [76 

 

 

These two doubleblind placebo control trials that were published in 2001 and 2003 showed that the 

therapies were ineffective in so much as they failed to deliver on their primary end point [77, 78]. 



Furthermore, significant numbers of patients developed involuntary movements in the absence of 

Ldopa but in the presence of the graft; so called graft induced dyskinesias. Thus in many eyes it was 

shown that this approach did not work, produced side effects and subsequently it was also shown that 

the transplants even develop the pathology they are designed to treat [79].  

 

 

However a more critical review of the trial data leads one to a rather different conclusion, which is that 

the fetal ventral mesencephalic (VM) grafts can work very well in some patients and that it is 

understanding why that determines whether this whole approach has a future (reviewed in [80]). 

However the use of human fetal tissue as the source of cells for grafting is clearly not possible in the 

long term for a range of ethical and practical reasons and as such there is a need to find a more ethically 

acceptable, readily available source of dopaminergic neurons for grafting [14, 81] (see Table 14.2 

 

 

 

One such cell source are ESCs [82]. However, the use of these cells has been hampered by problems of 

cell overgrowth; immune rejection and the ability to truly direct them into authentic nigral 

dopaminergic neurons. Of late though advances have been made in this area with the production of 

large numbers of A9 looking nigral neurons, which can survive grafting in animal models of PD with 

functional benefits and no tumour formation [14, 15, 83]. As an alternative iDA generated from iPSCs 

derived from patients’ skin fibroblasts are very appealing candidates [84], not only because they 

circumvent ethical issues but exclude the risk of immune rejection. One other benefit in using iPS cells is 

the possibility of rejuvenating the cells from an aged patient and thus eliminating the pathologies 



associated with ageing to restore tissue proliferation and function. The potential of iDA derived from iPS 

cells for cell replacement therapy has been assessed [85], and of late they seem to behave as well as 

embryonic stem (ES) derived dopamine cell products [66]. More recently it has been shown that 

differentiated iN and iDA can have effects in the 6OHDA lesioned rat, but the effects are modest at best 

with the cells not looking like mature nigral neurons [71]. Finally, there have been attempts to 

circumvent the need for an exogenous cell source for repairing the PD brain, through using approaches 

that work on in situ reprogramming [86]. However, to date the effects have been rather modest 

compared to stem cell derived transplants 

 

 

Stem cell based therapeutic approaches in Huntington’s Disease 

Huntington’s disease (HD) is an autosomal dominant disorder in which the abnormal gene codes for a 

mutant huntingtin protein that is expressed in every cell of the body. The disease typically presents in 

midlife with a combination of motor, cognitive and psychiatric problems and it then progresses over a 

20–25 year period to death [87, 88]. The pathological changes become more widespread with disease 

progression and while it was initially thought that the striatum was the main site of pathology in early 

HD, this view is in need of qualification based on the results of recent studies in early and premanifest 

HD [89]. These studies have shown that while the striatum is an early site of pathology, many other 

areas are affected, which is important given that the transplant approach to HD has only concentrated 

on repairing the medium spiny output neurons of the striatum. Of interest in this respect is the recent 

evidence suggesting that striatal neurons seem to be generated throughout life in the human striatum, 

and that this is reduced in HD patients. This raises the possibility that targeting endogenous neurogenic 

cells to enhance for example cell genesis and proliferation—in addition to transplantation based 

strategies—may hold potential for future therapeutic avenues in this condition [90 

 

 

In the 1980–1990s (before the gene for HD was discovered and thus the advent of HD transgenic mice) it 

was shown experimentally that grafts of fetal striatal tissue placed in the excitotoxic lesioned striatum 

could survive, differentiate, receive and make synaptic connections with the host brain and restore 

behaviour (reviewed in [91]—results which have been less impressive in transgenic animal models of 

disease [92, 93].  

 

 

Thus, based on the work in the nontransgenic models of HD, early clinical trials were done using human 

fetal striatal allografts in patients  with mild moderate disease. These trials were most notably done in 

the United States and Europe and showed mixed results [94].  

 

 



In the first major study to report, the French group found that 3of their 5 grafted patients showed some 

transient benefits and that these were linked to evidence of metabolic activity at the site of 

transplantation [95]. This was followed by a negative outcome study from the group based in South 

Florida where they found no benefit in any of their patients [96]. This transplant trial used a different 

approach with respect to the tissue dissection and this could help explain why they did not find any 

benefits. Interesting of late though, there has been work showing that the grafts in these patients have 

pathology resembling that seen in the host HD brain [97]. Other studies, most notably one in the United 

Kingdom, have tended to show that the approach using the current protocols are largely unsuccessful 

[80], although occasional successes have been seen in individual cases [98]. This variability is now being 

further explored in a large clinical study in France.  

 

 

While it is unclear whether fetal striatal allografting is useful and even sensible in HD, it has nevertheless 

led many to look at making striatal output neurons from stem cell sources for possible use in this way 

[99]. While to date the number of studies doing this have been limited, it is encouraging that the ability 

to make these cells is possible and that they do have some benefits in animal models of HD [100–102]. 

In addition stem cells are also being developed for use in HD through nonneuronal replacement 

strategies including using neural precursor cells for trophic support [103] and astrocytic grafts to support 

the HD affected neurons [104].  

 

 

An alternative use of these cells is to study disease pathogenesis in much the same way as has been 

done in PD. Thus, work has been done using stem cells transfected with part of the mutant huntingtin 

gene and more recently neurons derived from iPS cells from HD patients have been produced [105]. This 

has helped confirm some of the key steps in the disease process, and while these cells have not as yet 

been thought of as being useful in autografting therapies, this may evolve if the technologies for 

correcting gene defects can be perfected.  

 

 

Finally, the ability to use stem cells to repair the brain from within has always held great attraction since 

it was first shown that adult neurogenesis occurs in the mammalian brain (see earlier). In the case of 

animal models of HD it has been shown that abnormalities exist in hippocampal neurogenesis and this 

may account for some of the cognitive and affective aspects of the disease [106–108]. While the basis of 

this and its relevance to human disease is unknown, it does suggest that intrinsic repair strategies 

around this system may offer some potential therapeutic avenues worth exploring. In addition there 

have some reports of increased neurogenesis in the SVZ in HD [109], although again the relevance and 

significance of this is unknown as are changes in this same system seen in PD and mediated through a 

midbrain dopaminergic projection and ciliary neurotrophic factor (CNTF) and epidermal growth factor 



receptor (EGF) signaling pathways (see, for example, O’Keeffe et al. [110]). 

 

 

Stem cell based therapeutic approaches in stroke 

Stroke is a common disorder that affects many people and encompasses a range of different pathologies 

from large vessel occlusions with hemispheric loss of tissue to small vessel events causing lacunar 

infarcts. As a result, there has been much interest in using cells to repair the brain in stroke, although 

exactly how these cells might do this is debatable. Indeed, the idea has been pursued that they could be 

used for cell replacement, although this seems unlikely to work given the complexity and diversity of 

cells lost as part of the original insult. Nevertheless, there has been great interest in developing 

therapies that either recruit endogenous stem cells for repair or the implantation of exogenous grafts of 

stem cell derived progenitors that work to enhance repair through some form of paracrine effect 

 

 

After experimental stroke in rodents (e.g. occlusion of the middle cerebral artery; MCAO) proliferation 

of NSCs in the SVZ is strongly enhanced and a small fraction of these newborn cells can migrate away 

from the SVZ towards the striatum where they differentiate into neuronal cells (e.g. [111]). Similar 

observations have been made in human samples [112]. However, at this time it remains unclear if stroke 

induced endogenous neurogenesis functionally contributes to recovery [113]. Furthermore, it appears 

that the number of neurons generated is very low. Thus, strategies need to be developed that either 

enhance the survival or increase the recruitment of newborn cells generated from endogenous NSCs 

towards the ischaemic lesion.  

 

 

In the case of neural grafting, this has now evolved to the level of early clinical trials even though their 

experimental basis is often not that convincing. The most recent of these is a small open label study by 

ReNeuron in which implants of their immortalized human cortical cell line have been delivered to 

patients with well established infarcts. The preliminary published data shows that this approach seems 

safe with some signal of efficacy [114]. This is not the first trial using this approach as various other small 

open label studies have been undertaken. However, none have produced robust enough effects to be 

confident that these cells have a future in the treatment of this common condition (see [115 

 

 

Stem cell based therapeutic approaches in multiple sclerosis 

Multiple sclerosis (MS) is an autoimmune disease that leads to chronic demyelination followed by axonal 

loss and a loss of neuronal function. Stem cell based strategies (outside of bone marrow transplantation) 

to ameliorate disease progression and/or clinical symptoms have been trialed (e.g. [116, 117], reviewed 



in [118]) and may work through modulation of the autoimmune response and stem cell mediated 

regeneration [119, 120].  

 

 

Interestingly, peripheral administration of NSCs and mesenchymal stem cells (MSCs) seems to attenuate 

the immune reaction in animal models of MS such as experimental autoimmune encephalomyelitis 

(EAE) most probably by interfering with B cell proliferation and promoting T cell anergy. This leads to 

fewer inflammatory infiltrates and slowed disease progression in EAE. How stem cells exactly mediate 

these effects remains largely unknown but given that they can be easily delivered into the periphery this 

approach could translate into the clinical setting rather rapidly if proven preclinically to be of value 

[120].  

 

 

However, a large problem in MS is the degeneration of axons followed by neuronal dysfunction that 

eventually occurs even in the absence of a strong inflammatory state. Thus, strategies aiming to 

enhance remyelination are urgently required to truly advance regeneration in MS brains. Again in 

preclinical EAE models, the transplantation of stem cells with the ability to differentiate into 

oligodendrocytes reduced disease features. Furthermore, the targeted differentiation into myelinating 

oligodendrocytes derived from endogenous NSCs in the murine SVZ turned also out to be beneficial in 

EAE (e.g. [121]). Thus, current experiments aim to identify small molecules that may enhance the 

endogenous generation of functional oligodendrocytes to ameliorate disease features in chronic 

demyelinating disease [122, 123].  

 

 

Stem cells have also been used in other neurological conditions including multiple system atrophy 

(MSA). In this disease MSCs from the bone marrow have been used and in all cases the benefits seem 

marginal and need confirming in other studies [124]. The rationale for this approach is that these cells 

can have immune modulating effects as well as releasing trophic factors, all of which can help repair the 

brain. The same is also true for the adoption of similar strategies in motor neuron disease [125], and in 

this respect there is an ongoing trial being led by Clive Svendsen in California looking at glial cell derived 

neurotrophic factor (GDNF) expressing neural precursor cells implanted adjacent to the lumbar spine in 

patients with established amyotrophic lateral sclerosis (ALS 

 

 

Stem cell based approaches in traumatic spinal cord injury 

Spinal cord injury (SCI) is a rare disorder (incidence ranges from 15 to 30/million of the population) [126, 

127] and in many countries regulatory offices grant an orphan disorder designation to it. Due to an 

increased level of life expectancy achieved over the last three decades (overall life expectancy 



depending on the level of lesion is about 90% compared to age matched controls) the prevalence of 

people living with SCI is steadily increasing (in the United States with an estimated incidence of about 12 

000 new cases per year and the prevalence of patients living with SCI is about 1 million of the 

population) [128, 129]. In about 50% of patients the SCI is due to a traumatic event and for this specific 

population of patients, rehabilitation standards and outcome assessments have been continuously 

developed since the first conception and installation of a dedicated SCI rehabilitation programme (in 

Stoke Mandeville UK, 1942; see also [130, 131]). Traumatic SCI typically affects healthy and younger 

subjects (although in the recent decades a shift towards elderly subjects is observed with an increase of 

the mean age from 30 to 45 years), and compared to other neurological disorders of the brain (like MS, 

stroke, etc.) clinically constitutes a nondegenerative and nonprogressive disorder [132–134]. However, 

recent neuroimaging studies reveal ongoing supralesional signs of neural degeneration at the level of 

the (cervical) cord, brainstem, and brain following acute SCI. The impact on clinical recovery and 

interaction with rehabilitation strategies (physiotherapeutic and drug/cell interventions) remains to be 

explored [135–139]. Furthermore, SCI represents a very distinct disorder within the CNS due to a rather 

localized lesion within the cord. Although the spinal cord is embedded in the CNS compartment (sealed 

by the blood brain barrier) the SCI also clinically affects important neural tissue belonging to the 

peripheral nervous system (i.e. alpha motorneurones) [140]. This is clinically evident in the assessment 

of motor function where typically motor weakness of central (increased tone, spasticity, increased 

reflexes) and peripheral (reduced muscle tone, muscle atrophy, loss of reflexes) origin can be seen in the 

same patient. In these motor segments (myotomes) originating from areas with cord damage, there is 

always some alpha motorneurone damage, while below the level of lesion motor weakness is due to the 

loss of the descending central fibre tracts (i.e. pyramidal spinal tract) [141, 142]. As for the brain, the 

cord contains neural networks (integration and modulation of in/outputs that affect the facilitation or 

inhibition of neural inputs) and conductive pathways (longitudinal ascending/ descending fibre tracts). 

Accordingly, the cord is not only involved in conveying afferent efferent signals but also has a capacity to 

influence even rather complex sensorimotor functions (like walking) in a subhierarchical capacity 

relative to the brain. The abovementioned findings indicate that the potential use of stem cells to 

improve the outcome of human SCI potentially can potentially affect many different aspects of the 

spinal cord.  

 

 

So far there is no approved or established treatment of the injured spinal cord itself and all the success 

achieved to date have been through rehabilitation and improved outcome based on better management 

of secondary medical problems (like bowel bladder function). Although patients undergoing 

conventional rehabilitation programmes achieve advanced levels of functional outcome they still have a 

strong desire to improve their medical condition (patients acknowledge that they learned to live with 

SCI but they want to go beyond this). Due to these strong emotional desires many patients seek any 

potential treatment and they may even circumvent regulated (i.e. controlled) health care provisions 

(many will travel abroad to receive unproven treatments with any kind of cells). They even accept to pay 

at their own expense, enormous amounts of money (20 000–30 000 USD) to receive these cell 

applications even though none of the provided interventions have been proven to be effective.  

 



 

Concepts and preclinical models of cell based therapies in SCI follow in principle the same 

considerations as in stroke and other CNS disorders (Fig. 14.1). Most commonly applied are preclinical 

models applying olfactory ensheathing cells (OECs) [143, 144], Schwann cells (SCs) [145, 146], bone 

marrow stromal cells (BMSCs) [147], and NSCs [148, 149]. While the latter approaches have transferred 

to a degree to clinical trials, embryonic (ESCs) and induced pluripotent stem cells (iPSCs) although also 

intensively tested in animal models have not yet reached a required level of safety and confidence for 

their application in humans outside of a small trial funded by Geron.  

 

 

The improvement of locomotor recovery and surgical feasibility of cell transplantation has been shown 

in several experimental paradigms and includes: adult mice neural precursor cells [150]; combined SCs, 

olfactory ensheathing cells (OEC) [151], and chondroitinase ABC [152]; human SCs [153]: olfactory 

ensheathing cells [154]; homologous macrophages [155]; human ES oligo progenitors [156]; human 

umbilical cord cells [157]; human neurons from an embryonal teratocarcinoma cell line [158]; human 

neural Spinal precursor cells [159]; and human adult neural stem cells described herein [160–163].  

 

 

So far in preclinical models the three most likely mechanisms for using stem cells on the damaged cord 

include: (1) denovo remyelination, and (2) neurotrophic effects increasing neural plasticity, and (3) 

replacement of lost cells [164]. These occur to differing extents and the functional readouts in the 

animal mainly disclose minimal to moderate effects on locomotion. To enhance treatment effects 

combinatorial interventions are becoming increasingly tested and hold some promise [165, 166].  

 

 

While in principle the application of stem cells in animal SCI models appears feasible and reasonably safe 

many important aspects for translating these application into human treatments are unresolved: i) What 

is the most reasonable animal model (is there a need for nonhuman primate studies)?; ii) What injury 

model (contusion versus cut lesions) and extent (completeness of cord damage) of cord injury is most 

relevant?; iii) What kind of cell line may be superior and are there any reliable dose dependencies on 

outcomes?, and iv) What is the most sensitive timing after injury (what constitutes acute and how is that 

established in animals and humans) for cell transplantation [167]?  

 

 

Furthermore, the estimation of potential effect sizes as observed in the animal models to those 

involving patients is unclear [168]. While in human studies the stratification of patients has been 

typically based on actual clinical phenotypes on admittance (level and completeness of lesion, time after 



injury, and accompanying medical complications) novel stratification approaches are based on advanced 

prediction models that become targeted to the aimed primary endpoint and therefore improve the 

enrolment of appropriate patients and increase the statistical power [169–171]. In contrast, animal 

studies often apply a post hoc analysis with a stratification based on performance and biological markers 

that eventually allows one to find differences in outcomes. Clinical phase I/II trials concentrate on safety 

and feasibility (route of application, interactions of cells with host, interference of cell transplantation 

on recovery profiles, etc.) and so far animal models are of limited predictive value in terms of safety 

concerns [172]. One of the serious anxieties relates to the induction or increase of neuropathic pain, 

which is frequently an ongoing challenge for patients following SCI (in about 60–70% of patients) [173, 

174]. The induction of pain has not only been reported in animal models [175] but also in a case control 

series of intrathecal autologous bone marrow transplantations in humans with chronic SCI [176, 177].  

 

 

All the above mentioned issues need to be carefully considered when thinking about the translation of 

preclinical findings into a clinical trial [167]. In humans the procedural (surgical) and biological (cell 

integration, immunogenicity) safety of cell transplantation into the spinal cord has been revealed in 

three recent completed cell based trials applying intramedullary injections of cells [178–180]. Although 

the applied cells were of various types of non CNS autografts, the overall findings revealed the general 

feasibility of the approach and the surgical risk of cell implantation into the injured spinal cord was 

considered favourable. The first trial was a phase I study performed in Israel and assessed the safety of 

implanting incubated autologous macrophages within 14 days of injury [179]. The premise for this study 

was based on the concept of ‘protective autoimmunity’ in which endogenous activated macrophages 

and T cells are assumed to help augment spinal cord repair in the subacute inflammatory phase (1–2 

weeks post injury). The study enrolled eight patients with complete injury between C5 andT11 and the 

intervention consisted of four microinjections (60 microlitres) of autologous harvested macrophages 

(total 4 million cells) at the caudal border of the cord injury. No adverse events were attributed to the 

experimental therapy, and no acute or delayed morbidity associated with the volume or cell dose 

injected into the spinal cord was observed. This study resulted in a phase II study that enrolled 50 

subjects before study cancellation for financial reasons. The safety and efficacy data from this study will 

be analysed and eventually published [181].  

 

 

The second cell based study involved implantation of autologous bone marrow cells in combination with 

systemic granulocyte macrophage colony stimulating factor (GMCSF) administration in a phase I/II trial 

[180]. In this study a series of 35 patients with complete cervical or thoracic injuries were implanted 

with autologous bone marrow cells at various stages after injury (acute, subacute, and chronic). The 

premise of the study was based on the possibility of bone marrow derived cells producing 

neuroprotective cytokines or differentiating into neural cells helpful for repair. The surgical procedure 

involved exposing the injured cord and injecting 200 million cells in a total suspension volume of 1.8 ml 

(six 300 microlitre aliquots) ‘surrounding the lesion site’. One patient reported a transient postoperative 

reduction in hand strength and three patients had increased incisional muscle rigidity (presumably 



related to the surgical exposure). The authors reported that neuropathic pain was observed in a higher 

proportion (20%) of the patients who underwent transplantation, as opposed to the parallel ‘control’ 

(nontransplanted) patient group (7.7%). The increased neuropathic pain was predominantly noted in 

those patients transplanted in the subacute and chronic stage. The quality and nature of the 

neuropathic pain was not fully characterized in the report and pretransplant pain assessments were not 

quantified. In addition, the confounding variable of the second surgery necessary for the bone marrow 

cell transplantation as compared to the single stabilization surgery performed in the control group was 

not accounted for in the analysis of the neuropathic pain. The third study using a cell based strategy for 

SCI involved the injection of autologous olfactory ensheathing cells (OES) in three patients with a 

complete thoracic cord injury [178]. The cell doses in this limited series ranged between 12 and 28 

million cells and were injected into the area of injury and adjacent cord using a pattern between 270 

and 630 spinal cord injections. No deterioration in function or neuropathic pain was reported for the 

three subjects in this limited trial. 

 

 

In 2009, the US Food and Drug Administration (FDA) approved a phase I clinical trial (Geron company) to 

evaluate the safety of a human ES cell based product candidate, GRNOPC1, in patients with acute 

thoracic spinal cord injuries. The study was open to patients with a neurologically complete (ASIA 

Impairment Scale A) traumatic SCI limited to the thoracic region between T3 to T11. The administration 

of GRNOPC1 was supposed to occur between 7 and 14 days after the injury [182]. In total five patients 

were enrolled in this study until in November 2011 the company, due to strategic considerations, 

abandoned the study. There have been no serious adverse events reported so far. Meanwhile the 

company GeronR came insolvent and was replaced by AsteriasR be performing a dose escalation study 

in cervical sensorimotor complete SCI (Asterias ASTOPC1 started 2015, NCT02302157) [183].  

 

 

The safety and feasibility of intramedullary transplantation of human NSCs in thoracic (phase I/II 

thoracic (n = 12), regulated by Swiss medic/Health Canada NCT01321333 started 2011 and completed 

2015) and cervical (phase II cervical (n = 17), regulated by FDA NCT02163876) started in 2014 and 

prematurely terminated in June 2016) SCI has been proven in two clinical studies (sponsored by Stem 

cells Inc) [184, 185]. Unfortunately, again this company went into liquidation leaving the field without 

longterm followup studies and pointing to the challenges of advanced clinical trials by middle sized spin 

off companies [186].  

 

 

Furthermore, a clinical trial (initiated by The Miami Project to Cure Paralysis NCT01739023 started 2012, 

completed 2016) with the transplantation of autologous human Schwann cells in subacute thoracic SCI 

has again shown the surgical feasibility of this approach without efficacy. [187].  

 



 

The aforementioned findings (the list of studies is by no means considered to be complete) reveal that 

although there have been a limited number of studies in humans, the application of stem cells for 

human SCI appears to be feasible. So far, however, there have been no findings in humans that reveal 

major or clinical immediately obvious improvements in motor or sensory function. 

 

 

Conclusions 

The current possibilities for the structural and functional repair of the injured and diseased CNS are still 

extremely limited and lesions to the adult brain or spinal cord often result in a detrimental and disabling 

failure of CNS function. Thus, novel therapeutic avenues are needed. The identification of somatic stem 

cells within the adult nervous tissue and the improved handling and generation of various multipotent 

and pluripotent human stem cells, has raised hopes that these cells, whether endogenous or 

transplanted, will be useful for tissue repair. Even though stem cells are today not routinely used in the 

clinics to treat CNS diseases, a growing number of clinical studies have identified their great potential for 

functional repair or support of injured tissue. Ongoing studies of stem cell based treatments at this time 

are starting to explore their tolerability and to some extent efficacy. It seems plausible that diseases 

with a rather defined pathology (i.e. the loss of distinct cell populations such as dopaminergic cells in the 

substantia nigra in PD) represent more promising targets compared to those with more diffuse neural 

tissue damage occurring for example after stroke. Further, disease stratification, based on the 

identification of patient subgroups that may benefit more than others, will be important to ultimately 

judge the potential of stem cell therapies for several neuropsychiatric diseases. Clearly, future preclinical 

and clinical studies will have to identify the appropriate source for transplanted cells, be they patient 

derived such as iPSCs or derived from other human tissue representing allografts. Safety, comparability, 

and largescale availability of cells are certainly a prerequisite for the routine clinical use of stem cells or 

their derivatives. Important for the field and subsequently the clinical success of stem cell based 

therapies will be the need to avoid premature and over optimistic expectations of their efficacy as we 

move towards patients in the clinic. 
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